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This article aims at developing a high order pressure-based solver for the solution of the 
3D compressible Navier-Stokes system at all Mach numbers. We propose a cell-centered 
discretization of the governing equations that splits the fluxes into a fast and a slow 
scale part, that are treated implicitly and explicitly, respectively. A novel semi-implicit 
discretization is proposed for the kinetic energy as well as the enthalpy fluxes in the 
energy equation, hence avoiding any need of iterative solvers. The implicit discretization 
yields an elliptic equation on the pressure that can be solved for both ideal gas and 
general equation of state (EOS). A nested Newton method is used to solve the mildly 
nonlinear system for the pressure in case of nonlinear EOS. High order in time is granted 
by implicit-explicit (IMEX) time stepping, whereas a novel CWENO technique efficiently 
implemented in a dimension-by-dimension manner is developed for achieving high order 
in space for the discretization of explicit convective and viscous fluxes. A quadrature-free 
finite volume solver is then derived for the high order approximation of numerical fluxes. 
Central schemes with no dissipation of suitable order of accuracy are finally employed for 
the numerical approximation of the implicit terms. Consequently, the CFL-type stability 
condition on the maximum admissible time step is based only on the fluid velocity and 
not on the sound speed, so that the novel schemes work uniformly for all Mach numbers. 
Convergence and robustness of the proposed method are assessed through a wide set of 
benchmark problems involving low and high Mach number regimes, as well as inviscid and 
viscous flows.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The unsteady compressible Navier-Stokes equations constitute a mathematical model for the simulation of a wide set of 
applications in fluid mechanics, that involve aerospace and mechanical engineering as well as environmental engineering 
[1–6]. Atmospheric flows, geophysical flows in oceans, rivers and lakes can be described relying on the Navier-Stokes model, 
which is also used in industrial applications such as the design of wind or water turbines, aircraft engines and cars. The 
governing equations are based on the physical principle of conservation and they can be derived from the conservation of 
mass, momentum and total energy. The compressible Navier-Stokes equations already embed several simplified sub-systems, 
such as the compressible Euler equations in the case of inviscid flows or the incompressible Navier-Stokes equations, that 
can be retrieved in the zero Mach number limit. The Mach number, which is the ratio between the fluid velocity and the 
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sound speed, describes the regime of the fluid under consideration. High Mach number situations are typically encountered 
in industrial engineering, whereas geophysical phenomena mostly involve low Mach number flows.

The numerical methods developed for the solution of high and low Mach number problems are quite different, because 
of the nature of the governing equations. For the high Mach number case explicit upwind finite difference and Godunov-
type finite volume methods are very popular [7–12]. On the other hand, in the incompressible regime the elliptic behavior 
of the pressure introduces a very severe restriction on the maximum admissible time step for low Mach number flows. 
Indeed, the CFL-type stability condition for explicit methods depends also on the sound speed which becomes predominant 
in the zero Mach limit. Furthermore, in [13] the effect of numerical viscosity on the slow waves introduced by upwind-
type schemes is proven to degrade the accuracy. As a consequence, implicit strategies for time discretization have been 
proposed in order to avoid the acoustic CFL restriction and enlarge the time step. However, fully implicit methods imply the 
solution of large nonlinear systems that are computationally very expensive and in which the convergence is numerically 
very difficult to control. In addition, in many realistic scenarios, both high and low Mach regimes coexist and can arise 
during the simulation without being predicted in advance, thus needing the design of numerical methods that can deal 
with all Mach numbers.

This is the reason behind the research activity carried out in the recent past for investigating an alternative strategy to 
treat problems with multiple time scales. A successful idea consists in treating implicitly only one part of the system to be 
solved while keeping the remaining explicit, thus both incompressible and compressible regimes can be handled [6,14–20]. 
This approach permits to design space and time discretizations in which the implicit part of the system is relatively easy to 
be inverted, typically avoiding nonlinear systems, while keeping robustness and shock-capturing properties in the explicit 
part. There are mainly two classes of schemes that allows to deal with split sub-systems, namely one for the fast and the 
other for the slow scale phenomena, that are treated implicitly and explicitly, respectively. The first class is given by implicit-
explicit (IMEX) methods [21–25] or, more in general, by the so-called partitioned schemes [26]. IMEX schemes are proven 
to be very effective for many applications. Their main feature is to achieve high order under a time step stability constraint 
independent of the values of the fast scale, and to satisfy the Asymptotic Preserving (AP) property, meaning that the limit 
model is consistently reproduced at the discrete level [27–29]. The other class is represented by semi-implicit methods 
[30–35], which have also gained visibility in the past years. A conservative pressure-based semi-implicit all Mach number 
solver for incompressible as well as compressible unsteady flows has been proposed in [36]. Here, the idea is to obtain a 
linearly implicit scheme for the stiff terms in the governing equations, thus avoiding any need of iterative methods. In [37]
a flux splitting for the Euler equations is proposed that aims at obtaining an advection and a pressure sub-system. Both 
sub-systems are demonstrated to be hyperbolic and in [38] the advection system is treated explicitly, while the pressure 
sub-system is discretized implicitly, so that the time step is only limited by the fluid velocity and not by the acoustic 
speed. Staggered meshes are employed, hence allowing for compact stencils and permitting to recover by construction 
the divergence free constraint of the velocity field in the low Mach limit, along the lines of [31,32]. Following these ideas, 
high order semi-implicit methods coupled with discontinuous Galerkin (DG) space discretizations on unstructured staggered 
meshes have been forwarded for compressible and incompressible flows [39–41], on dynamic adaptive meshes [42,43] and 
for axially symmetric flows [44,45]. Semi-implicit hybrid finite volume/finite element schemes have been recently proposed 
in [46,47].

It is worth to notice, that the two above approaches, IMEX and semi-implicit, have been generalized under a unified 
framework in [33]. This generalization, permits the construction of high order linearly implicit schemes by using the 
standard formalism of IMEX Runge-Kutta methods. In this paper, we will rely on such methodology to achieve efficient 
high-order accurate semi-implicit discretizations of the Navier-Stokes system for all Mach number flows.

Recently, an all Mach solver for the 3D Euler equations has been designed [48], which is a cell-centered second order 
accurate finite volume method with IMEX time stepping. An elliptic equation on the pressure is solved at the aid of an 
iterative Picard algorithm. Once the pressure is computed, it is used for advancing in time the momentum and the total 
energy. The work has then been extended in [49] to the full Navier-Stokes equations with implicit viscosity treatment. 
In [50] the two-dimensional Euler equations are considered at all Mach number regimes, presenting second order IMEX 
schemes based on the solution of an elliptic equation on the energy. A finite volume solver has been forwarded in [51] for 
inviscid and viscous compressible fluids in two space dimensions at high and low Mach flows. There, an elliptic equation 
on the enthalpy allows to treat also general equations of state (EOS) that link the internal energy with the density and the 
enthalpy. A similar approach based on the solution of a pressure wave equation can be found in [38], where ideal gas and 
general cubic EOS are considered. The aforementioned references are at most second order accurate in space and time. High 
order semi-implicit schemes for the isentropic Euler equations on two-dimensional Cartesian meshes are described in [34], 
where the seminal work presented in [33] is applied to low Mach flows.

In this article we present a third-order semi-implicit scheme on collocated Cartesian grids for the solution of the com-
pressible Navier-Stokes equations at all Mach numbers. The flux splitting proposed in [37] requires an implicit sub-system 
to be solved for the pressure. The novel semi-implicit discretization proposed in this work splits the kinetic energy con-
tribution as well as the enthalpy fluxes in the energy equation into an explicit and an implicit part. Differently from what 
presented in [38,48], no iterative solvers are needed anymore and the solution of the pressure system is directly computed. 
General equations of state yield a mildly nonlinear system that can then be handled relying on a nested Newton technique 
developed in [52]. An efficient CWENO reconstruction that is carried out dimension-by-dimension is used for achieving high 
order of accuracy in space, while IMEX Runge-Kutta time stepping is adopted following [33]. Finally, a quadrature-free finite 
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volume scheme is developed for the convective explicit part of the system, which also contains the viscous fluxes of the 
Navier-Stokes equations. The scheme is also proven to be asymptotically preserving, hence it recovers the limit model in 
the stiff limit. To overcome the appearance of spurious oscillations due to high order discretization in time, a new limiting 
strategy is proposed which is based on a convex combination between high and first order numerical solution. Applications 
to inviscid and viscous compressible flows in low and high Mach regimes are shown, demonstrating the accuracy and the 
robustness of the novel method.

The rest of the paper is organized as follows. In Section 2 the compressible Navier-Stokes equations are described. We 
also introduce the low Mach scaling of the governing partial differential equations (PDE) and the continuous model retrieved 
in the stiff limit. The novel semi-implicit scheme is detailed in Section 3. Firstly, a semi-discretization in time is explained, 
then the fully discrete first order scheme is derived. Details of the high order extension in time and in space are then given 
and finally the quadrature-free finite volume scheme for the treatment of explicit terms is presented. The limiting strategy 
adopted to reduce spurious oscillations when high order time discretizations are adopted is detailed at the end of this 
section. Numerical convergence studies and applications to a wide set of test problems is shown in Section 4. A concluding 
section finalizes the article where we draw some conclusions and present an outlook to future research.

2. Governing equations

Let � ∈ Rd represent a bounded domain in the space dimension d ∈ {1, 2, 3}, which is defined by spatial position vector 
x ∈ � and time variable t ∈R+ . The compressible Navier-Stokes equations write

∂

∂t

⎛
⎝ ρ

ρu
ρE

⎞
⎠+ ∇ ·

⎛
⎝ ρu

ρu ⊗ u + pI
ρku + hρu

⎞
⎠= ∇ ·

⎛
⎝ 0

σ
σ u + λ∇T

⎞
⎠ , (1)

with I being the identity matrix. ρ(t, x) > 0 is the density of the fluid, u(t, x) ∈ Rd denotes the velocity vector, ρE(t, x)

represents the total energy with the specific kinetic energy k, the specific internal energy e and the specific enthalpy h. 
The fluid pressure is denoted by p(t, x) > 0 and T (t, x) > 0 refers to the fluid temperature with λ representing the thermal 
conductivity. In R3 one has x = (x, y, z) and u = (u, v, w). The right hand side of system (1) is conveniently formulated by 
introducing the stress tensor σ which under Stokes hypothesis is

σ = μ
(
∇u + ∇u�)− 2

3
(μ∇ · u) I, (2)

where μ is the viscosity of the fluid. A thermal equation of state p = p(T , ρ) and a caloric equation of state e = e(T , ρ) are 
required to close system (1). Typically, the temperature is canceled from these two equations of state, yielding one single 
relation of the form e = e(p, ρ), which will be adopted in this work. We assume that the internal energy is a non-negative 
and non-decreasing function of the fluid pressure p. Furthermore, the relation between the viscosity coefficient and the 
fluid temperature is governed by Sutherland’s law, that is

μ(T ) = μ0

(
T

T0

)β T0 + s

T + s
, (3)

with parameters μ0, T0, β and s. Notice that constant viscosity is retrieved if β = 1 and s = 0. The ratio of specific heats 
of the gas at constant pressure cp and at constant volume cv is γ = cp/cv and the specific heat at constant volume cv is 
determined by cv = R/(γ − 1) with R being the gas constant which is assumed to be R = 0.4. Finally, the specific kinetic 
energy k and the specific enthalpy h are given by the following relations:

k = 1

2
u2, h = e + p

ρ
. (4)

Let observe that the total energy flux in (1) is written as

u(ρE + p) = ρk u + ρh u, (5)

according to [37], thus introducing a flux splitting which will be extremely important for the numerical methods developed 
in this work.

2.1. Ideal gas EOS

If an ideal gas is considered, the thermal and caloric equation of state (EOS) are given by

p = RT , e = cv T . (6)

ρ

3
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The temperature can be eliminated using both expressions in (6), thus leading to an equation of state of the form e(p, ρ), 
that is

e(p,ρ) = p

(γ − 1)ρ
. (7)

Here the relation between pressure p and internal energy e is linear.

2.2. Redlich-Kwong EOS

Let now consider a general cubic equation of state, which according to [1] takes the form

p(T ,ρ) = RT

v − b
− a(T )

(v − br1) (v − br2)
. (8)

Here, v = 1/ρ is the specific volume, b represents the co-volume and r1, r2 are two parameters. The function a(T ) is related 
to the attraction term in the EOS. The caloric equation of state which corresponds to (8) writes [1]

e(T ,ρ) = cv T + a(T ) − T a′(T )

b
U (v,b, r1, r2), (9)

with

a′(T ) = da(T )

dT
, U (v,b, r1, r2) = 1

r1 − r2
ln

(
v − br1

v − br2

)
. (10)

Different equation of states can be derived by appropriate choices of the parameters in (8)-(9). For instance, the Redlich-
Kwong EOS is obtained by setting r1 = 0 and r2 = −1, with the attraction term given by a(T ) = 1/(2

√
T ). In this case the 

EOS yields a nonlinear relation between internal energy and pressure. In order to compute a function of the form e(p, ρ), 
we first need to determine the temperature from the thermal equation of state (8). In our approach we solve the nonlinear 
equation p(T , ρ) numerically relying on a simple and efficient Newton method. Once the temperature is known, it can be 
inserted into the caloric EOS (9) to obtain the relation e(p, ρ).

2.3. Scaling of the Navier-Stokes equations

The governing equations (1) can be rescaled relying on the following scaled variables:

ρ̃ = ρ/ρ0, ũ = u/u0, p̃ = p/p0, Ẽ = ρ0 E

p0
, T̃ = T /T0, x̃ = x/x0, t̃ = t/t0, (11)

where ρ0, p0, x0, t0, u0 = x0/t0 and T0 = p0/ρ0 are typical values referred to the problems under consideration. Further-
more, let μ̃ = μ/μ0 and λ̃ = λ/λ0 be the rescaled coefficients for the viscosity and the thermal conductivity, respectively, 
and let us introduce a stiffness parameter ε

ε = ρ0u2
0

p0
, (12)

which is related to the global Mach number M = u0/c and characterizes the flow and the nondimensionalization. The 

sound speed c is then given by c2 =
(

∂ p

∂ρ

)
s

with s representing the entropy. Using the definitions (11)-(12) and omitting 

the tildes, the rescaled Navier-Stokes equations read

∂

∂t

⎛
⎝ ρ

ρu
ρE

⎞
⎠+ ∇ ·

⎛
⎝ ρu

ρu ⊗ u + 1
ε pI

ε ρku + hρu

⎞
⎠= ∇ ·

⎛
⎝ 0

σ
εσ u + λ∇T

⎞
⎠ . (13)

The right hand side of (13) can be expanded at the aid of the Reynolds and Prandtl numbers

Re = u0x0

ν
, Pr = μγ cv

λ
, (14)

with the kinematic viscosity ν = μ
ρ , hence yielding

∇ ·
⎛
⎝ 0

σ
εσ u + λ∇T

⎞
⎠= ∇ ·

⎛
⎜⎜⎝

0
1

Re ∇ ·
[
ρ
(∇u + ∇u�)− 2

3 (ρ∇ · u) I
]

ε
Re ∇ ·

[(
ρ
(∇u + ∇u�)− 2

3 (ρ∇ · u) I
)

· u
]
+ cp

Re·Pr ∇T

⎞
⎟⎟⎠ . (15)
4
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Looking at the rescaled equations (13) it is evident that the stiffness is originated in the momentum equations by the pres-
sure waves. As a consequence, the energy equation turns out to be stiff as well. In particular, the energy can be decomposed 
into a pressure and a kinetic part, corresponding to internal and kinetic energy contribution. In the stiff regime the pressure 
evolves very fast, implying the same for the component of the energy related to the pressure, i.e. the internal energy e.

2.4. Low Mach limit of the Navier-Stokes equations

Let us now investigate the limit of the Navier-Stokes equations in the case ε → 0. In [53] the low Mach limit is studied 
in a bounded domain, while a fully three dimensional space is considered in [4]. Here, we only briefly recall the formal 
limit obtained with an ideal gas EOS (7). On the boundary ∂� of the computational domain the following conditions must 
be imposed:

u(t, x) · n = 0,
∂T

∂n
(t, x) = 0, ∀x ∈ ∂�, t > 0, (16)

with n denoting the unit outward normal vector to the boundary and n its direction. The limit for ε → 0 of system (1) then 
writes [4]

∂tρ + ∇ · (ρu) = 0, (17)

∂t(ρu) + ∇ · (ρu ⊗ u) + ∇p1 = ∇ · σ , (18)

γ ∇ · u = (γ − 1)∇ ·
(

λ

R
∇
(

1

ρ

))
, (19)

assuming that the limit pressure p1 = limε→0
1
ε (p − p0) exists. Notice that if we set μ = 0 and λ = 0, that is viscous forces 

and thermal conductivity are neglected, the well known low Mach limit for the compressible Euler equations is retrieved. 
Specifically, this implies a divergence free condition on the velocity field, i.e. ∇ · u = 0, which derives from the energy 
equation. In the case of the Navier-Stokes equations, in the low Mach limit the fluid is no more incompressible because of 
large temperature variations and heat conduction effects.

Regardless the viscous or inviscid property of the fluid, in the low Mach regime the sound speed is much bigger than 
the fluid velocity, thus it corresponds to small values of ε in (13). From the numerical viewpoint, the maximum admissible 
time step 
t = tn+1 − tn for fully explicit schemes is given by a CFL-type stability condition that writes


t ≤ CFL min
�

(
max(|u ± c/

√
ε|)


x
+ max(|v ± c/

√
ε|)


y
+ max(|w ± c/

√
ε|)


z
+ max

(
λv


x2
+ λv


y2
+ λv


z2

))−1

,

(20)

where 
x, 
y, 
z are the characteristic mesh spacing along each spatial direction in 3D. The eigenvalues of the viscous 
sub-system for an ideal gas are given according to [54] by

λv = max

(
4

3

μ

ρ
,

γμ

Pr ρ

)
. (21)


t is of order 
√

ε and tends to 0 with ε, thus dictating severe limits in the maximum size of the time step. Furthermore, 
even if this constraint is satisfied and the scheme runs with very small time steps, explicit schemes are not capable to 
capture the correct asymptotic regime as discussed in [55,56,13].

3. Numerical scheme

For the sake of simplicity we present the discretization for the compressible Euler equations, that are retrieved by 
neglecting the terms on the right hand side of system (1). The compressible Navier-Stokes model will then be included with 
fully explicit discretization of the viscous forces in the momentum equations and the work of the viscous stress tensor in 
the energy equation, while keeping untouched the semi-implicit scheme developed for the inviscid hydrodynamics model. 
For an ideal gas (7) the heat flux in the energy equation can be treated implicitly because temperature can be written as 
T = p/(Rρ), therefore it can be easily embedded in the semi-implicit solver for the pressure.

3.1. First order semi-discrete scheme in time

The time discretization is based on a semi-implicit approach which leads to the following scheme:

ρn+1 − ρn

+ ∇ · (ρu)n = 0, (22)


t

5
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(ρu)n+1 − (ρu)n


t
+ ∇ · ((ρu)n ⊗ (ρu)n)+ 1

ε
∇pn+1 = 0, (23)

(ρe)n+1 + ε
2

(ρu)n

2ρn (ρu)n+1 − (ρE)n


t
+ ∇ · (ε ρku)n + ∇ · (hn(ρu)n+1)= 0, (24)

where the kinetic energy in the total energy definition splits into an explicit and an implicit contribution, namely

(ρE)n+1 := (ρe)n+1 + ε
(ρu)n

2ρn
(ρu)n+1. (25)

The scheme (22)-(24) is written in flux form for all variables, hence it is locally and globally conservative. The terms 
involving pressure are treated implicitly, while the convective part of the system is discretized explicitly. This allows the 
time step to be free from any restriction based on acoustic waves, that is a desirable property in the low Mach regime 
when ε → 0. As a consequence, the time step must satisfy a milder CFL stability condition which is based only on the 
material speed of the flow |u|, that is


t ≤ CFL
min�(
x,
y,
z)

max�(|u|) , (26)

with CFL < 1. The algorithm for the solution of the semi-implicit numerical scheme (22)-(24) is made of the following steps.

1. The density equation can be solved explicitly, thus ρn+1 is readily obtained from (22).
2. The momentum equation (23) is then inserted into the energy equation (24) yielding an elliptic equation on the pres-

sure:

(ρe)n+1 + ε
(ρu)n

2ρn

(
(ρu)n − 
t∇ · ((ρu)n ⊗ (ρu)n)− 
t

ε
∇pn+1

)
=

(ρE)n − 
t∇ · (ε ρku)n − 
t∇ ·
(

hn
(

(ρu)n − 
t∇ · ((ρu)n ⊗ (ρu)n)− 
t

ε
∇pn+1

))
. (27)

Notice that a semi-implicit discretization of the enthalpy flux in the energy equation (24) leads to an explicit evaluation 
of the enthalpy, i.e. hn , and an implicit treatment of the momentum, that is (ρu)n+1. Shifting the unknowns on the left 
hand side and multiplying by the stiffness factor ε, the pressure wave equation (27) writes

ε (ρe)n+1 + ε

t

2

(ρu)n

ρn
∇pn+1 − 
t2 (∇ · hn∇pn+1)= ε

[
(ρE)∗ − ε


t

2

(ρu)n

ρn
(ρu)∗ − 
t∇ · (hn (ρu)∗

)]
,

(28)

with the explicit quantities

(ρE)∗ = (ρE)n − 
t∇ · (ε ρku)n , (29)

(ρu)∗ = (ρu)n − 
t∇ · ((ρu)n ⊗ (ρu)n) . (30)

The internal energy (ρe)n+1 must now be written in terms of the new pressure pn+1 using the equation of state.

Ideal gas EOS According to (7) for a perfect gas the internal energy is given by

(ρe)n+1 = pn+1

γ − 1
, (31)

thus the elliptic equation (28) constitutes a linear system that can be directly solved.

General EOS For a general equation of state the relation between internal energy and pressure might be nonlinear, 
hence requiring the solution of the following nonlinear equation for the pressure:

g(pn+1) = P(pn+1) +R pn+1 − bn = 0, (32)

with the definitions

R pn+1 := ε

t

2

(ρu)n

ρn
∇pn+1 − 
t2 (∇ · hn∇pn+1) , (33)

bn := ε

[
(ρE)∗ − ε


t (ρu)n

n
(ρu)∗ − 
t∇ · (hn (ρu)∗

)]
. (34)
2 ρ

6
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The term P(pn+1) contains the nonlinearity of (28) due to the EOS (9) for the internal energy (ρe)n+1. Recall that the 
new density ρn+1 is already known thanks to (22). A Newton method is then used for solving the piecewise linear equa-
tion (32), along the lines of the algorithm presented in [52]. The solution for the new pressure is iteratively obtained 
as

g(pn+1,k+1) = g(pn+1,k) + 
pk dg(pn+1,k)

pn+1,k
= 0, (35)

with k denoting the iteration index and 
pk = (pn+1,k+1 − pn+1,k). In practice, equation (35) is directly solved for 
pk , 
then the new pressure at the next Newton iteration is given by pn+1,k+1 = pn+1,k − 
pk . The Newton method stops 
when the prescribed tolerance δ = 10−10 has been reached, e.g. 
pk < δ.

3. The new pressure pn+1 is used in (23) to compute the momentum (ρu)n+1 at the next time level.
4. Finally, the total energy is simply updated relying on (25), which ensures thermodynamic compatibility between the 

new pressure pn+1 and momentum (ρu)n+1.

For the full Navier-Stokes system, the viscous contribution σ in the momentum equation as well as the work of the 
viscous stress tensor σ · u in the energy equation are discretized explicitly and are formally embedded in the explicit 
quantities (ρu)∗ and (ρE)∗ , respectively. If an ideal gas is considered, an implicit discretization is likely to be assumed 
for the temperature gradient in the energy equation. Since temperature can be easily written in terms of pressure, i.e. 
T n+1 = pn+1/(Rρn+1), this contribution is added to the pressure wave equation (28) and implicitly solved.

Asymptotic preserving property The limit of the governing equations (13) is given when ε → 0. The expansion of a generic 
variable m in powers of the stiffness parameter ε, that is m = m(0) + εm(1) + ε2m(2) + . . ., is applied to all variables involved 
in the governing rescaled Navier-stokes model, which is here assumed with μ = λ = 0. These expressions are then inserted 
into the semi-discrete scheme (22)-(24) and only leading order terms are considered, thus obtaining

ρn+1
(0) − ρn

(0)


t
+ ∇ · (ρu)n

(0) = 0, (36)

(ρu)n+1
(0) − (ρu)n

(0)


t
+ ∇ ·

(
(ρu)n

(0) ⊗ (ρu)n
(0)

)
+ ∇pn+1

(1) = 0, (37)

(ρe)n+1
(0) − (ρe)n

(0)


t
+ ∇ ·

(
hn

(0)ρ
n+1
(0) un+1

(0)

)
= 0, (38)

∇pn+1
(0) = 0. (39)

The incompressibility constraint

∇ · un+1
(0)

= O(
t), (40)

with O(
t) independent of ε, must now be retrieved in order to demonstrate the asymptotic preserving property of the 
scheme. Indeed, this recovers the limit of the energy equation at the continuous level (19). To ease the notation the subscript 
(0) is removed and all terms estimated by C
t with the constant C �= C(ε) will simply be addressed with O(
t). Notice 
that from (36)-(37) one has

ρn+1 = ρn +O(
t), un+1 = un +O(
t). (41)

Recalling that e = e(ρ, p) according to (4), the first term in the limit energy equation (38) can be written as

(ρe)n+1 − (ρe)n


t
= 1


t

(
∂(ρe)

∂ρ
(ρn+1 − ρn) + ∂(ρe)

∂ p
(pn+1 − pn) +O(ρn+1 − ρn)2 +O(pn+1 − pn)2

)

= ∂(ρe)

∂ρ

ρn+1 − ρn


t
+O(
t), (42)

where pn+1 − pn = 0 because of (39) which implies that pressure is constant when ε → 0. Now, using the limit continuity 
equation (36) and the observation (41), from expression (42) we get

(ρe)n+1 − (ρe)n


t
= ∂(ρe)

∂ρ

ρn − 
t∇(ρnun) − ρn


t
+O(
t)

= −∂(ρe)

∂ρ

(
un · ∇ρn + ρn∇ · un)+O(
t)

= −∂(ρe) (
un+1 · ∇ρn + ρn∇ · un+1)+O(
t). (43)
∂ρ

7
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Since (ρh) = (ρe) + p, the divergence flux in (38) is rewritten at the aid of (41) as

∇ · (hnρn+1un+1)= un+1 · ∇(hnρn+1) + hnρn+1∇ · un+1

= un+1 · ∇(hnρn) + hnρn∇ · un+1 +O(
t)

= un+1 · ∇ ((ρe)n + pn)+ hnρn∇ · un+1 +O(
t)

= un+1
(

∂(ρe)

∂ρ
∇ρn + ∂(ρe)

∂ p
∇pn

)
+ hnρn∇ · un+1 +O(
t)

= ∂(ρe)

∂ρ
un+1 · ∇ρn + hnρn∇ · un+1 +O(
t). (44)

The energy equation (38) can therefore be formulated by summing up the terms (43)-(44), which yields

−∂(ρe)

∂ρ

(
un+1 · ∇ρn + ρn∇ · un+1)+ ∂(ρe)

∂ρ
un+1 · ∇ρn + hnρn∇ · un+1 = O(
t)

−∂(ρe)

∂ρ
ρn∇ · un+1 + ((ρe)n + pn)∇ · un+1 = O(
t)(

−(ρn)2 ∂e

∂ρ
+ pn

)
∇ · un+1 = O(
t). (45)

The incompressibility constraint (40) is therefore satisfied because 
(
−(ρn)2 ∂e

∂ρ + pn
)

�= 0. For an ideal gas EOS it holds 
∂e
∂ρ = − p

ρ2(γ −1)
, thus equation (45) becomes

hn ∇ · un+1 = O(
t). (46)

3.2. First order fully discrete scheme in space and time

Let us consider a three-dimensional computational domain �(x) = [xmin; xmax] × [ymin; ymax] × [zmin; zmax] which is 
discretized by a Cartesian grid composed of a total number Ne = Nx ×N y ×Nz of cells Ci, j,k with volume |Ci, j,k| = 
x
y 
z. 
Specifically, the characteristic mesh sizes are given by


x = xmax − xmin

Nx
, 
y = ymax − ymin

N y
, 
z = zmax − zmin

Nz
. (47)

A triple index (i, j, k) referred to each space direction allows a cell to be uniquely identified. The faces in x, y and z direction 
are referred to as (i +1/2, j, k), (i, j +1/2, k) and (i, j, k +1/2), respectively. The associated normal vectors are the canonical 
unit vectors, that is nx = (1, 0, 0), ny = (0, 1, 0), nz = (0, 0, 1). The cell center is located at point xi, j,k = (xi, y j, zk) and a face 
center is at point xi+1/2, j,k =

(
xi+xi+1

2 , y j, zk

)
. The spatial discretization is based on collocated grids, in which all variables 

of the governing equations are defined at the cell centers of the control volumes. Implicit fluxes are discretized with finite 
differences with no numerical dissipation, while we rely on finite volume schemes based on numerical fluxes for the explicit 
terms.

For the sake of clarity and to improve the readability, the fully discrete scheme will be presented for the one-dimensional 
case, since extension to multiple space dimensions on Cartesian meshes follows straightforward. Let us introduce the explicit 
operator m∗

i which applies to a generic cell quantity mn
i :

m∗
i = mn

i − 
t


x

(
f m

i+1/2 − f m
i−1/2

)
. (48)

Here, f m
i±1/2 denote the numerical fluxes, that are explicitly given by a Rusanov–type approximate Riemann solver, thus 

leading to

f m
i+1/2 = 1

2

(
f (mn

i+1) + f (mn
i )
)− 1

2
an

i+1/2

(
mn

i+1 − mn
i

)
, an

i+1/2 = max
(|un

i+1|, |un
i |
)
,

f m
i−1/2 = 1

2

(
f (mn

i ) + f (mn
i−1)

)− 1

2
an

i−1/2

(
mn

i − mn
i−1

)
, an

i−1/2 = max
(|un

i |, |un
i−1|
)
,

(49)

where f (·) represents the physical flux related to variable m. Notice that the numerical viscosity is chosen to be proportional 
to the material speed, so that if the Mach number is high the speed of sound is bounded by the fluid velocity, whereas for 
very low Mach number this choice should be sufficient to guarantee stability with the dissipation an

i+1/2 ≈ |u|.
Now, a spatial discretization of the time semi-discrete scheme (22)-(24) is presented. Let us start following the steps of 

the algorithm detailed in 3.1.
8
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1. The new density ρn+1 is immediately available solving the continuity equation (22) with mn
i ≡ ρn

i in (48):

ρn+1
i = (ρn

i

)∗
. (50)

2. The next step requires the solution of the elliptic equation for the pressure (28). Two different flux derivative operators 
need to be discretized, namely ∂ p

∂x and ∂
∂x

(
h ∂ p

∂x

)
. A central finite difference discretization is then given by

∂ p

∂x

∣∣∣∣n+1

xi

= pn+1
i+1 − pn+1

i−1

2
x
+O(
x2), (51)

∂

∂x

(
h
∂ p

∂x

)∣∣∣∣n,n+1

xi

= 1


x2

[
hn

i−1 hn
i hn

i+1

] ⎡⎣ 3/4 −1 1/4
0 0 0

1/4 −1 3/4

⎤
⎦
⎡
⎣ pn+1

i−1
pn+1

i
pn+1

i+1

⎤
⎦+O(
x2), (52)

which provides up to second order of accuracy. The approximate derivative in (52) is based on a finite difference 
approach with Lagrange interpolation polynomials of degree 2 on the stencil composed by cells [i − 1, i, i + 1]. This 
makes the scheme very compact even on collocated grids, hence achieving the same properties typically related to the 
usage of staggered meshes. Similar discretization is applied to all derivative operators that are discretized implicitly, 
namely the pressure gradient in the momentum equation, the implicit part of the kinetic energy and the term ∇ ·
(hn(ρu)∗) in the energy equation. The pressure wave equation (28) can now be expressed after multiplication by the 
cell volume 
x as

ε
xρn+1
i en+1

i + ε

t

4

(ρu)n
i

ρn
i

(
pn+1

i+1 − pn+1
i−1

)
−


t2


x

(
pn+1

i−1

(
3

4
hn

i−1 + 1

4
hn

i+1

)
− pn+1

i

(
hn

i−1 + hn
i+1

)+ pn+1
i+1

(
1

4
hn

i−1 + 3

4
hn

i+1

))
= ε
x bn

i , (53)

with the known right hand side

bn
i = (ρE)∗i − ε


t

2

(ρu)n
i

ρn
i

(ρu)∗i − 
t

2
x

(
hn

i+1 (ρu)∗i+1 − hn
i−1 (ρu)∗i−1

)
. (54)

Depending on the equation of state, the pressure wave equation (53)-(54) involves either a linear or a nonlinear system 
that is solved following the ansatz given by (31) or (35), respectively. This allows to compute the new pressure pn+1

i .
3. The momentum is updated at the next time level as follows:

(ρu)n+1
i = (ρu)∗i − 1

ε


t

2
x

(
pn+1

i+1 − pn+1
i−1

)
. (55)

4. The total energy is then given by

(ρE)n+1
i = ρn+1

i en+1 + ε
(ρu)n

i

2ρn
i

(ρu)n+1
i , (56)

where the internal energy is computed at the aid of the equation of state e = e(ρ, p).

Remark on the discretization of the enthalpy The enthalpy in the energy flux is discretized explicitly in each control volume, 
i.e. hn

i . Particular care must be taken in order to achieve preservation of constant velocity and pressure flows at the discrete 
level. Therefore, the enthalpy is not simply evaluated according to the definition (4), but it is discretized as

hn
i = ρn

i hn
i

ρn+1
i

, (57)

which guarantees structure preserving properties that will be explained in Section 3.3.

Remark on the compactness of the stencil A direct discretization of the total energy equation in (13) would lead to

(ρE)n+1
i = (ρE)∗i − 
t

2
x

(
hn

i+1(ρu)n+1
i+1 − hn

i−1(ρu)n+1
i−1

)
= (ρE)∗i − 
t

2
x

[
hn

i+1

(
(ρu)∗i+1 − 
t

2
x

(
pn+1

i+2 − pn+1
i

))
− hn

i−1

(
(ρu)∗i−1 − 
t

2
x

(
pn+1

i − pn+1
i−2

))]
:= E1, (58)
9
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where the viscous source terms have been neglected and the discretization of the momentum equation (55) has been 
directly inserted. This is a consequence of the fully discrete approach, in which both momentum and energy equations are 
first discretized in space and time, and then formal substitution of the discrete momentum into the energy equation yields 
the scheme (58), as done in [38,48]. It is evident that in this case the stencil is larger, therefore the pressure wave equation 
(27) would involve those cells spanning the interval [i − 2, i − 1, i, i + 1, i + 2]. On the other hand, the total energy which 
results from the wave equation for the pressure (53) with the discrete operator (52) is indeed given by

(ρE)n+1
i = (ρE)∗i − 
t

2
x

(
hn

i+1 (ρu)∗i+1 − hn
i−1 (ρu)∗i−1

)
+ 
t2


x2

(
pn+1

i−1

(
3

4
hn

i−1 + 1

4
hn

i+1

)
− pn+1

i

(
hn

i−1 + hn
i+1

)+ pn+1
i+1

(
1

4
hn

i−1 + 3

4
hn

i+1

))
:= E2, (59)

where we have first performed only a time discretization, then plugged the momentum into the energy equation and finally 
discretized in space. It is also possible to quantify a correction factor CE to retrieve equation (58) from (59), that is

C E = E2 − E1

= 
t2


x2

(
hn

i−1 pn+1
i − hn

i−1 pn+1
i−2 + hn

i+1 pn+1
i − hn

i+1 pn+1
i+2

)
+ 
t2


x2

[
4pn+1

i−1

(
3

4
hn

i−1 + 1

4
hn

i+1

)
− 4pn+1

i (hn
i−1 + hn

i+1) + 4pn+1
i+1

(
1

4
hn

i−1 + 3

4
hn

i+1

)]
. (60)

We point out that this discretization does not compromise the incompressibility constraint that must be preserved in the 
low Mach limit, as shown in the previous Section 3.1. Indeed, it allows to maintain the stencil more compact, thus improving 
the computational efficiency for parallel simulations.

3.3. Exact preservation of pressure and velocity across a contact discontinuity

As pointed out in [57], a consistent numerical scheme should be able to preserve a constant pressure and a constant 
velocity field through a discontinuity in the fluid density during the time evolution of the solution. Let us consider a one-
dimensional computational domain � = [−xL; xR ] which is filled with an ideal fluid assigned with the following initial 
condition (t = t0) for all control volumes i = 1, . . . Nx:

ρi(t0) = ρ0
i =

{
ρL x ≤ xD

ρR x > xD
, ui(t0) = u0

i = u0, pi(t0) = p0
i = p0, i = 1, . . . Nx, (61)

with xD representing the location of the discontinuity inside the domain and ρL �= ρR being non-negative real numbers. The 
explicit operator (48) for density, momentum and energy explicitly writes

(ρi)
∗ = ρn

i − 
t


x

(
f ρ,n

i+1/2 − f ρ,n
i−1/2

)
= ρn+1

i , (62)

(ρu)∗i = (ρu)n
i − 
t


x

(
f q,n

i+1/2 − f q,n
i−1/2

)
= ρn

i un
i − 
t


x
u0

(
f ρ,n

i+1/2 − f ρ,n
i−1/2

)
= ρn+1

i u0, (63)

(ρE)∗i = ρn
i en

i + ρn
i kn

i︸ ︷︷ ︸
=En

i

− 
t


x

u2
0

2

(
f ρ,n

i+1/2 − f ρ,n
i−1/2

)

= ρn
i en

i + ρn
i

(un
i )

2

2
− 
t


x

(un
i )

2

2

(
f ρ,n

i+1/2 − f ρ,n
i−1/2

)
= ρn

i en
i + ρn+1

i

u2
0

2
. (64)

Assuming an ideal gas EOS (7) and using the enthalpy definition (57) together with the above explicit operators, the 
right hand side (54) of the pressure system reads

bi =
(

p0

γ − 1
+ ρn+1

i

u2
0

2
− ε

ρn
i u0

2ρn
i

ρn+1
i u0

)
− 
t

2
x

(
γ pn

0

(γ − 1)ρn+1
i+1

ρn+1
i+1 u0 − γ pn

0

(γ − 1)ρn+1
i−1

ρn+1
i−1 u0

)

= p0

γ − 1
+ (1 − ε)ρn+1

i

u2
0

2
, (65)

while the left hand side (53) simply reduces to
10
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ε
x

γ − 1
p0 + ε


t

4

(ρu)n
i

ρn
i

(p0 − p0) −
[

3

4
hn

i−1 + 1

4
hn

i+1 − hn
i−1 − hn

i+1 + 1

4
hn

i−1 + 3

4
hn

i+1

]
p0 = ε
xbi,

ε
x

γ − 1
p0 + 0 + [0]p0 = ε
xbi, (66)

thus p0 is the solution of the linear system (53)-(54) independently of ε and the constant pressure field is preserved. As a 
consequence, the update of the momentum with (55) writes

(ρu)n+1
i = ρn+1

i u0 − 
t

2ε
x
· 0, (67)

hence the constant velocity is maintained as well. The test case RP0 in Section 4.2 gives numerical evidences of this property 
achieved by the novel semi-implicit scheme (53)-(55).

3.4. Extension to high order of accuracy

To reduce the effects of numerical dissipation the first order semi-implicit scheme detailed in Section 3.2 is extended to 
high order of accuracy in space and time. A semi-implicit IMEX discretization [33] is adopted for achieving high order in 
time, while we rely on a CWENO reconstruction [58] for gaining high accuracy in space. Finally, the numerical scheme for 
the explicit convective terms is implemented in a new quadrature-free formulation.

The governing equations (1) can be cast into a compact and general form that writes

∂Q

∂t
+ ∇ · F + ∇p = 0, (68)

where Q = (ρ, ρu, ρE) is the vector of conserved variables and F = F(Q, ∇Q) represents the nonlinear flux tensor which 
includes both convective and viscous fluxes of the Navier-Stokes equations, that is

F =
⎛
⎝ ρu

ρu ⊗ u − σ
ρku + hρu − σ u − λ∇T

⎞
⎠ . (69)

3.4.1. High order in time
Following [33], the governing PDE are written under the form of an autonomous system, that is

∂Q

∂t
= H (Q(t),Q(t)) , ∀t > t0, with Q(t0) = Q0, (70)

with the initial condition Q0 defined at time t0. The function H represents the spatial approximation of the terms ∇ ·F +∇p
in (68). An explicit treatment is assumed for the first argument of H denoted with QE , whereas an implicit discretization is 
adopted for the second argument referred to as QI , thus obtaining a partitioned system with Q = (QE , QI ), hence⎧⎪⎪⎨

⎪⎪⎩
∂QE

∂t
= H (QE ,QI )

∂QI

∂t
= H (QE ,QI )

, (71)

where the number of unknowns has been doubled. However, for a specific choice of time discretizations and for autonomous 
systems this duplication is indeed only apparent [33]. The Navier-Stokes equations with the flux splitting (5) fulfill the 
formalism (71), i.e.

H (QE ,QI ) =
⎧⎨
⎩

(ρu)E

(ρu ⊗ u)E + pI − σ E

ρI (ku)E + ρI (hu)E − (σ u)E − λ∇T I

, (72)

where QE = (ρE , (ρu)E , (ρE)E ) and QI = (ρI , (ρu)I , (ρE)I ). High order in time is achieved making use of implicit-explicit 
(IMEX) Runge-Kutta schemes [24], that are multi-step methods based on s stages and typically represented with the double 
Butcher tableau:

c̃ Ã

b̃�
c A

b� , (73)

with the matrices ( Ã, A) ∈ Rs×s and the vectors (c̃, c, ̃b, b) ∈ Rs . The tilde symbol refers to the explicit scheme and matrix 
Ã = (ãi j) is a lower triangular matrix with zero elements on the diagonal, while A = (aij) is a triangular matrix which 
11
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accounts for the implicit scheme, thus having non-zero elements on the diagonal. Here, we adopt IMEX schemes with b̃ = b
and the stiffly accurate property in the implicit part, that is crucial for assuring asymptotic consistency and accuracy of the 
scheme [34]. Applying the partitioned Runge-Kutta method to (72) under the assumption that the system is autonomous, 
only one set of stage fluxes needs to be computed and the fluxes at each stage i = 1, . . . , s can be evaluated as

ki = H
(

Qn
E + 
t

s∑
i=1

ãi j k j, Qn
I + 
t

s∑
i=1

aij k j

)
, 1 ≤ i ≤ s. (74)

A semi-implicit IMEX Runge-Kutta method is obtained as follows. Let us first set Qn
E = Qn

I = Qn , then the stage fluxes for 
i = 1, . . . , s are calculated as

Qi
E = Qn

E + 
t
i−1∑
j=1

ãi jk j, 2 ≤ i ≤ s, (75a)

Q̃i
I = Qn

E + 
t
i−1∑
j=1

aijk j, 2 ≤ i ≤ s, (75b)

ki = H
(

Qi
E , Q̃i

I + 
t aii ki

)
, 1 ≤ i ≤ s. (75c)

Finally, the numerical solution is updated with

Qn+1 = Qn + 
t
s∑

i=1

biki . (76)

Notice that equation (75c) implies an implicit step with the solution of a system for ki , that corresponds to the pressure 
wave equation (53)-(54). The final update of the solution (76) is done using the implicit weights b� that are assumed to be 
equal to the explicit ones b̃� . Furthermore, the stage fluxes ki in (74) are the same for both explicit and implicit conserved 
vectors QE and QI , therefore the system is actually not doubled, since there is indeed only one set of numerical solution.

The IMEX schemes used in this work have been developed in [24,59] and are listened hereafter. Stiffly accurate schemes 
are addressed with SA, while SSP stands for Strong Stability Preserving methods, which perform better if shock waves or 
strong discontinuities appear in the flow. Each scheme is described with a triplet (s, ̃s, p) which characterizes the number s
of stages of the implicit scheme, the number s̃ of stages of the explicit scheme and the order p of the resulting scheme.

• SP(1,1,1)

0 0
1

1 1
1

(77)

• SA SSP(3,3,2)

0 0 0 0
1/2 1/2 0 0

1 1/2 1/2 0
1/3 1/3 1/3

1/4 1/4 0 0
1/4 0 1/4 0

1 1/3 1/3 1/3
1/3 1/3 1/3

(78)

• SA DIRK(3,4,3)

0 0 0 0 0
δ δ 0 0 0

0.717933 1.437745 −0.719812 0 0
1 0.916993 1/2 −0.416993 0

0 1.208496 −0.644363 δ

δ δ 0 0 0
δ 0 δ 0 0

0.717933 0 0.282066 δ 0
1 0 1.208496 −0.644363 δ

0 1.208496 −0.644363 δ

(79)

δ = 0.435866
• SSP3(4,3,3)

0 0 0 0 0
0 0 0 0 0
1 0 1 0 0

1/2 0 1/4 1/4 0
0 1/6 1/6 2/3

α α 0 0 0
0 −α α 0 0
1 0 1 − α α 0

1/2 δ η 1/2 − δ − η − α α

0 1/6 1/6 2/3

(80)

α = 0.241694, δ = 0.060424, η = 0.129153
12
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The first order scheme (77) corresponds to the implicit Euler method and is stiffly accurate and stability preserving. Both 
properties are also exhibited by the second order scheme (78), while for third order accurate IMEX RK methods we use 
either (79) or (80) for low or high Mach number flows, respectively. Indeed, in the stiff limit only (79) can be used in order 
to be consistent with the limit model at the discrete level [13,34].

3.4.2. High order in space
To achieve high order of accuracy in space centered finite difference schemes are adopted for the treatment of the 

implicit terms, whereas a novel CWENO reconstruction is employed for the explicit convective and viscous terms in the 
governing equations (1).

Implicit terms The spatial discretization of the flux derivative operators (51)-(52) presented in Section 3.2 accounts for up 
to second order spatial accuracy. Standard finite differences are employed for higher order discretizations, hence yielding

∂ p

∂x

∣∣∣∣n+1

xi

= −pn+1
i+2 + 8pn+1

i+1 − 8pn+1
i−1 + pn+1

i−2

12
x
+O(
x4), (81)

∂

∂x

(
h
∂ p

∂x

)∣∣∣∣n,n+1

xi

= 1


x2

[
hn

i−2 hn
i−1 hn

i hn
i+1 hn

i+2

] ·
⎡
⎢⎢⎢⎣

−25/144 1/3 −1/4 1/9 −1/48
1/6 5/9 −1 1/3 −1/18

0 0 0 0 0
−1/18 1/3 −1 5/9 1/6
−1/48 1/9 −1/4 1/3 −25/144

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

pn+1
i−2

pn+1
i−1

pn+1
i

pn+1
i+1

pn+1
i+2

⎤
⎥⎥⎥⎥⎥⎦+O(
x4). (82)

Let observe that the operator (82) is an extension of the second order operator (52), hence it is derived in the same 
way by using Lagrange interpolation polynomials of higher order for the derivative of the pressure. We recover the same 
discretization proposed in [34] and the scheme maintains the compactness of the stencil, that is now bounded in the 
interval [i − 2, i − 1, i, i + 1, i + 2]. The fourth order finite difference approximation (81) is applied to all first derivatives that 
appear in the elliptic equation on the pressure (53)-(54) as well as for the pressure flux in the momentum equation (55).

Explicit terms High order shock-capturing finite volume methods are usually built upon a nonlinear reconstruction proce-
dure that allows to stabilize the numerical scheme and avoid spurious oscillations in the vicinity of strong discontinuities. 
Here, we propose to develop a CWENO-type algorithm [58,60] because it permits to keep a compact stencil, that is deter-
mined by the polynomial degree M of the reconstruction. The spatial discretization makes use of Cartesian control volumes, 
so that the entire reconstruction algorithm can be performed in a reference element with dimensional splitting, that is we 
first obtain a high order polynomial of degree M in x direction, then in y and finally in z direction. This results in a com-
putationally more efficient method compared to fully multidimensional reconstruction algorithms. A similar approach has 
been forwarded in [61] for WENO reconstructions, requiring larger stencils and thus more memory consumption compared 
to the algorithm proposed in the following.

The reconstruction procedure aims at generating high order polynomials w(t, x), which are written using a nodal basis
of polynomials of degree M defined in a reference unit interval I = [0; 1]. A cell is rescaled on the reference interval at the 
aid of the following change of coordinates:

ξ = ξ(x, i) = 1


x

(
x − xi−1/2

)
, η = η(y, j) = 1


y

(
y − yi−1/2

)
, ζ = ζ(z,k) = 1


z

(
z − zi−1/2

)
. (83)

In particular, since the reconstruction will then be employed for the evaluation of explicit numerical fluxes across cell 
boundaries, the basis consists of M + 1 linearly independent Lagrange interpolating polynomials of maximum degree M , 
i.e. {ψl}M+1

l=1 , passing through a set of M + 1 nodal points {ξk}M+1
k=1 , which are assumed to be the Gauss-Lobatto nodes. The 

interpolation property holds by construction, that is

ψl(ξk) = δlk, l,k = 1, . . . , M + 1. (84)

In this way the reconstruction degrees of freedom automatically provide the values of the high order numerical solution for 
each conserved variable at the nodes. Furthermore, with our choice the degrees of freedom coincide with the Gauss-Lobatto 
nodes, thus very efficient quadrature-free computations can be designed for general integration over the reference interval, 
e.g. the numerical flux integration. The final reconstruction polynomial will then take the form

w(tn, x) = ψl(ξ)ψq(η)ψr(ζ ) ŵn
i jk,pqr, (85)

with the unknown degrees of freedom ŵn
i jk,pqr that must be determined. Einstein summation convention, implying sum-

mation over indices appearing twice, is adopted. The CWENO reconstruction is carried out in a dimension-by-dimension 
13
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manner for each cell Cijk and the starting point is the definition of the one-dimensional reconstruction stencils. Contrar-
ily to WENO schemes [61], here we always consider a total number of Ns = 3 reconstruction stencils, namely one central 
stencil (s = 0) for reconstructing a polynomial of degree M and two fully one-sided stencils, one to the left (s = 1) and 
the other one to the right (s = 2), for obtaining second order polynomials that are only used for nonlinear stabilization in 
the presence of discontinuous profiles of the numerical solution. The central stencil s = 0 is assembled for each Cartesian 
direction as

S0,x
i jk =

i+L⋃
e=i−L

Cejk, S0,y
i jk =

j+L⋃
e= j−L

Ciek, S0,z
i jk =

k+L⋃
e=k−L

Ci je, (86)

where the spatial extension of the stencil to the left L and to the right R is given by

M L R
even −M/2 M/2
odd −(M + 1)/2 (M + 1)/2

.

The low order one-sided stencil s = 1 (left-sided) and s = 2 (right-sided) are simply assembled with the element under 
consideration Cijk and the direct neighbor to the left and to the right, that is

S1,x
i jk =

i⋃
e=i−1

Cejk, S2,x
i jk =

i+1⋃
e=i

Cejk, (87)

the same holding for y and z direction. The reconstruction is based on integral conservation of all conserved quantities 
stored in the state vector Qn and is firstly performed along the x direction. Therefore, we look for a reconstruction polyno-
mial defined on each reconstruction stencil s = 0, 1, 2 of the form

w s,x(tn, x) = ψp(ξ) ŵn,s
i jk,p, (88)

for which integral conservation holds, that is

1


x

xe+1/2∫
xe−1/2

ψp(ξ(x)) ŵn,s
i jk,p = Qn

ejk, ∀Cejk ∈ Ss,x
i jk , (89)

that must be prescribed for each stencil s ∈ [0, 1, 2]. Recall that for the one-sided stencils (s = 1, 2) the reconstruction poly-
nomial is of degree one, therefore the nodal basis is defined accordingly by locally setting M = 1. Equations (89) lead to 
a linear system which might become overdetermined in the case of even order schemes. We rely on a constrained least 
squares (CLSQ) technique [62,35] for determining the unknowns ŵn,s

i jk,p , where the linear constraint is given by requiring 
that integral conservation (89) exactly holds true for the cell Cijk under consideration. In the CWENO framework the poly-
nomial w0,x(tn, x) defined on the central stencil is often referred to as optimal polynomial, because among all the possible 
polynomials of degree M , it is the only one that shares the same cell average Qn

i jk in the element, while being close in 
the least-square sense to the other cell averages in the stencil. According to [63], the central polynomial w̃0,x

(tn, x) is 
then obtained by difference between the polynomial w0,x(tn, x) and the linear combination of the one-sided polynomials 
w1,x(tn, x) and w2,x(tn, x) of lower degree [60], that is

w̃0,x
(tn, x) = 1

λ0

(
w0,x(tn, x) −

2∑
s=1

λs w s,x(tn, x)

)
, w̃1,x

(tn, x) = w1,x(tn, x), w̃2,x
(tn, x) = w2,x(tn, x),

(90)

where λs with s = 0, 1, 2 are positive coefficients such that

2∑
s=0

λs = 1. (91)

Here, we do not use the pointwise WENO formulation originally introduced in [64], but the polynomial WENO schemes for-
warded in [62]. As a consequence, the linear weights are a normalization which sums up to unity and we set λ0 = 200/λsum

for S0,x and λ1 = λ2 = 1/λsum for all one-sided polynomials [63], hence λsum = 202. Once the polynomials w s,x(tn, x) in (88)
are available, we proceed by constructing a nonlinear data-dependent hybridization among the three polynomials obtained 
for each stencil, that is
14
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w̃x
(tn, x) = ψp(ξ) ŵn

i jk,p, with ŵn
i jk,p =

2∑
s=0

ωs w̃ s,x
(tn, x), (92)

where the nonlinear weights ωs are given by

ωs = ω̃s

2∑
s=0

ω̃s

, with ω̃s = λs

(σs + ε)r . (93)

The parameter ε = 10−14 avoids division by zero and the exponent r = 4 is chosen according to [63]. The oscillation indica-
tors σs are given by

σs = �lm ŵn,s
l ŵn,s

m , (94)

where the oscillation matrix �lm can be computed as done in [65] once and for all on the reference interval I , hence

�lm =
M∑

α=1

1∫
0

∂αψl(ξ)

∂ξα
· ∂αψm(ξ)

∂ξα
dξ. (95)

Notice that the integrals appearing in (89), which then constitute the so-called reconstruction matrix, only depend on the 
geometry, i.e. on the interval over which integration is carried out. Since this corresponds to the reference element I , 
the reconstruction matrix can be evaluated, inverted and stored during the pre-processing stage and it remains the same 
throughout the entire computation. Furthermore, only one reconstruction matrix is needed because all control volumes are 
rescaled to the reference element and our CWENO reconstruction is carried out one by one for each spatial dimension.

The polynomials wx(tn, x) obtained so far are high order accurate in x direction, but they still remain a cell average along 
the y and z direction. Therefore the CWENO reconstruction procedure illustrated above needs to be performed again along 
y and finally along z direction (see [61] for further details). The final element-wise reconstruction polynomials w(tn, x)

in (85) represent entire polynomials defined by a nodal basis, which makes use of the Gauss-Lobatto interpolation points. 
Consequently, the degrees of freedom associated to the high order reconstruction are nothing but the high order extrapo-
lated values of the conserved quantities at a set of quadrature nodes, thus they are ready for performing integration as a 
direct result of the reconstruction procedure. In other words, no further reconstruction evaluations will be needed while 
integrating over cell boundaries for the numerical flux computation.

Quadrature-free finite volume scheme for the explicit fluxes The interpolation property of the CWENO reconstruction polyno-
mials, that are expressed in terms of a nodal basis defined through a set of Gauss-Lobatto points in the reference interval 
I , can be fully exploited for designing a quadrature-free finite volume solver for the computation of the explicit fluxes in 
(48). For the sake of clarity let us consider a one-dimensional setting with the generic cell quantity mn

i . The integral of the 
basis functions ψl(ξ) over the reference interval I is simply given by

Fl :=
1∫

0

ψl(ξ)dξ, l = 1, . . . , M + 1, (96)

which will then be used as universal flux matrix. The high order version of the finite volume scheme (48) writes

m∗
i = mn

i − 
t


x

(
Fl f̂ m

l,i+1/2 −Fq f̂ m
q,i−1/2

)
, (97)

where the expansion coefficients of the fluxes, i.e. f̂ m
l,i+1/2 and f̂ m

q,i−1/2, are obtained by computing the corresponding fluxes 
defined in (49) at the Gauss-Lobatto nodes, that is l and q for the face i + 1/2 and i − 1/2, respectively. Because the 
reconstruction values are directly available at quadrature points, no computation is needed but it is sufficient to pick the 
correct degree of freedom (either l or q in (97)) out of the CWENO polynomial w(tn, x) and calculate the Rusanov flux (49). 
From (97) it is evident that the high order finite volume scheme is quadrature-free, thus requiring only a matrix-vector 
multiplication for obtaining high order numerical fluxes for all conserved variables. The same applies for the fluxes in y and 
z direction. Quadrature-free schemes remarkably improve the computational efficiency and have been recently extended 
also to moving meshes in [66].

3.5. Viscous fluxes of the Navier-Stokes equations

The extension of the algorithm to the Navier-Stokes model is simply performed relying on an explicit discretization of 
the viscous fluxes which are then added to the explicit operators m∗

i . For first order schemes the discrete velocity gradients 
on the control volume boundaries are computed as
15
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∇un
i+1/2 = 1


x

(∇un
i+1 − ∇un

i

)
, ∇un

i−1/2 = 1


x

(∇un
i − ∇un

i−1

)
. (98)

For higher order (M > 0) the CWENO reconstruction polynomials are exploited, since they automatically provide gradients 
of the conserved variables. Specifically, the Rusanov flux (49) is slightly modified along the lines of [67,54] in order to 
include both the convective and the viscous terms, hence obtaining the following numerical flux f w for the reconstructed 
conserved variables w(tn, x) at the interface xi+1/2:

f w
i+1/2 = 1

2

[
f
(

w i+1(t
n, xi+1/2),∇w i+1(t

n, xi+1/2)
)+ f

(
w i(t

n, xi+1/2),∇w i(t
n, xi+1/2)

)]
− 1

2

(
an

i+1/2 + 2ηλn
v,i+1/2

)
· [w i+1(t

n, xi+1/2) − w i(t
n, xi+1/2)

]
, (99)

with λn
v,i+1/2 representing the maximum eigenvalue of the viscous operator defined in (21). Here, the physical fluxes f (·)

contain all terms of the nonlinear flux tensor F (69) and the numerical viscosity is supplemented with a dissipative coeffi-
cient η which arises from the solution of the generalized diffusive Riemann problem [67] and is evaluated as

η = 2M + 1


x
√

π/2
. (100)

3.6. A posteriori stabilization at high Mach number

In the case of strong discontinuities in the flow, implicit high order time discretizations are not able to remove over-
shooting and undershooting of the numerical solution. This aspect has been investigated in [68] and numerically observed 
in [48] for a second order IMEX scheme applied to the Euler equations. Spurious oscillations are generated by the violation 
of the explicit CFL stability condition and they do not vanish but remain limited in time. In this sense high order implicit 
schemes are not L∞ stable but only L2 stable.

To overcome this problem, we propose to use a stabilization technique that is based on a convex combination of high 
order and first order schemes, which are proven to ensure monotonicity. Differently from the a posteriori approach that has 
been developed in [19], here we employ a limiting procedure which makes use of an a priori strategy. The first objective 
is to detect troubled cells, i.e. those regions of the computational domain � which are characterized by strong shocks. We 
rely on the flattener variable described in [69] as shock indicator. A shock can be identified by comparing the divergence of 
the velocity field ∇ · un with the minimum of the sound speed cn

min obtained by considering the element Cijk itself as well 
as its Neumann neighborhood Di jk , i.e. all elements which share one face with Cijk:

Di jk =
e=i+1⋃
e=i−1

Cejk ∪
e= j+1⋃
e= j−1

Ciek ∪
e=k+1⋃
e=k−1

Cije with e �= {i, j,k}. (101)

The divergence of the velocity field is then evaluated as follows:

(∇ · un)i jk = 1


x

[
(un

i+1 jk − un
ijk) − (un

i−1 jk − un
ijk)
]

+ 1


y

[
(vn

i j+1k − vn
i jk) − (vn

i j−1k − vn
i jk)
]

+ 1


z

[
(wn

ijk+1 − wn
ijk) − (wn

ijk−1 − wn
ijk)
]
. (102)

Among all neighbors we compute the minimum sound speed cn
min ∈ Di jk , which is a function of the pressure and the 

density. The divergence of the velocity field (102) is estimated from the cell-averaged states Qn which are known at the 
current time. The flattener variable χn

i jk can now be computed:

χn = min

[
1,max

(
0,−∇ · un + k1cn

min

k1cn
min

)]
, (103)

with the coefficient k1 = 10−3 set for all our computations. To ensure further stabilization, the flattener is extended also to 
those elements which are about to be crossed by a shock, but have still to enter the wave, as done in [70]. The flattener 
variable is interpreted as a detector, therefore the cell is flagged as troubled if χn > 0. Let observe that in the case of 
rarefaction waves, where the divergence of the velocity field is positive in (103), and when shocks of modest strength occur, 
that is −k1cn

min ≤ ∇ · un ≤ 0, the flattener variable is zero. Moreover, the flattener is bounded in the interval [0; 1].
Once the flattener indicator has been computed for all cells, the semi-implicit scheme presented in Section 3.2 is run 

with high order time and space discretizations following the algorithm detailed in Section 3.4. As a result one obtains a so-
called candidate solution Qn+1,O(M+1) that is of order M + 1. Then, if at least one cell is marked as troubled by the flattener, 
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a first order numerical solution is computed, i.e. Qn+1,O(1) . Finally, the new solution at the next time level is given by the 
convex combination

Qn+1 = χn Qn+1,O(1) + (1 − χn)Qn+1,O(M+1). (104)

If no cells are marked as troubled, then the new solution corresponds to the fully high order candidate solution. We un-
derline that very few cells are typically flagged by the flattener and if no shocks occur, like in the low Mach regime, the 
flattener is never activated and the semi-implicit scheme is always run without any further stabilization.

4. Numerical results

The new high order semi-implicit pressure solver (SI-P) is applied to a large set of different test cases in order to assess 
the accuracy and the robustness of the numerical scheme. Firstly, the accuracy of the method is validated at different Mach 
number regimes. Secondly, shock tube problems with ideal gas law (7) and Redlich-Kwong EOS (8)-(9) are considered, thus 
showing the capability of the high order semi-implicit method to deal with both linear and nonlinear equation of state. 
Finally, multidimensional test cases for inviscid and viscous flows involving shocks and other discontinuities are presented. 
All simulations are run in a fully three-dimensional setting and the time step is always computed according to a CFL-
type stability condition that is only based on the maximum absolute value of the flow velocity and eventually the viscous 
eigenvalues, i.e.


t ≤ CFL min
�

( |u|

x

+ |v|

y

+ |w|

z

+
(

λv


x2
+ λv


y2
+ λv


z2

))−1

, (105)

which does no longer involve any dependency on the rescaled sound speed c/
√

ε compared to the time step (20) of 
fully explicit discretizations. The computational domain is addressed with � and is discretized with a total number of 
Nx × N y × Nz Cartesian control volumes. If not specified, the ideal gas EOS is assumed with γ = 1.4, the flattener variable 
presented in Section 3.6 is not activated and the third order version of the method in space and time is adopted. For 
viscous flows we assume constant viscosity, hence we set β = 1 and s = 0 in (3). The vector of conserved variables is 
Q = (ρ, ρu, ρv, ρw, ρE), while the vector of primitive variables is addressed with U = (ρ, u, v, w, p).

4.1. Numerical convergence studies

The convergence of the novel semi-implicit pressure solver presented in this article is studied by considering a modified 
version of the smooth isentropic vortex [71] governed by the compressible Euler equations, thus we set μ = λ = 0 in the 
Navier-Stokes system (1). The computational domain is given by � = [0; 10] × [0; 10] × [0; 1] with periodic boundaries. The 
fluid is characterized by a homogeneous background field on the top of which some perturbations are added, thus

U(t0, x) = (1 + δρ,1,1,0,1 + δp), (106)

with the perturbations for temperature δT , density δρ and pressure δp that read

δT = − (γ − 1)ε2

8γπ2
e1−r2

, δρ = (1 + δT )
1

γ −1 − 1, δp = (1 + δT )
γ

γ −1 − 1. (107)

The vortex maintains perfect equilibrium and the flow is stationary, thus the exact solution Uex is simply given by the initial 
condition at any time t > 0, i.e. Uex = U(t0, x). The final time of the simulation is t f = 1 and the test is run on a sequence 
of successively refined computational meshes. The grids are refined in the x − y plane while keeping constant the number 
of cells Nz = 4 along the z direction. The error Lm is normalized with respect to the exact solution, hence it is computed at 
the final time as

Lm(Q) =
m
√∫

�

∣∣∣∣w(t f , x) − Q(t0, x)
∣∣∣∣m dx

m
√∫

�
||Q(t0, x)||m dx

, (108)

where the integrals are evaluated with Gaussian quadrature formulae of suitable order of accuracy (see [72]) and the expo-
nent m determines the type of error norm that is computed. The numerical solution Q(t f , x) is reconstructed with the high 
order accurate CWENO procedure detailed in Section 3.4, that is w(t f , x). The time step is computed according to (105)
with CFL = 0.9. Numerical convergence studies are firstly carried out in the normal regime ε = 1 for second and third order 
accurate semi-implicit schemes. The results are reported in Table 1 where errors are measured in L1, L2 and L∞ norm for 
the conserved variables (ρ, ρu, ρE). Both IMEX schemes (79) and (80) are proven to achieve the formal order of accuracy 
as well as the second order SA-SSP2 scheme (78).

Secondly, the behavior of the scheme at low Mach regimes is investigated by considering different values of the stiffness 
parameter ε, namely we consider ε ∈ [10−6; 10−1] and the convergence rates are shown for the horizontal momentum 
W. Boscheri and L. Pareschi Journal of Computational Physics 434 (2021) 110206
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Fig. 1. Third order pressure contours (20 levels have been used in the range bounded by the minimum and maximum value of the pressure) for the 
isentropic vortex test with Nx = N y = 128 at time t = 1. Stream-traces of the velocity field for ε = 100 (left), ε = 10−3 (middle) and ε = 10−6 (right). (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. RP0 involving a moving contact discontinuity at final time t f = 0.5. From top left to bottom right: 3d computational grid with density contours and 
comparison of density, velocity and pressure (symbols) versus the reference solution (straight line).
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Fig. 3. Lax shock tube problem (RP1) at final time t f = 0.14. Comparison of density, velocity and pressure (symbols) versus the reference solution (straight 
line) for first and third order SI-P schemes.
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Table 1
Numerical convergence results for the compressible Euler equations using second and third 
order SI-P schemes with ε = 1 and different IMEX time stepping. The errors are measured in 
L1 norm and refer to the variables ρ (density), ρu (horizontal momentum) and ρE (energy) 
at time t = 1.

SI-P O2

Nx (N y ) L1(ρ) O(ρ) L1(ρu) O(ρu) L1(ρE) O(ρE)

16 8.274E-04 - 1.861E-02 - 8.897E-04 -
32 3.374E-04 1.29 4.307E-03 2.11 3.041E-04 1.55
64 8.838E-05 1.93 1.045E-03 2.04 8.468E-05 1.84
128 2.199E-05 2.01 2.583E-04 2.02 2.195E-05 1.95

SI-P O3 with SA-DIRK(3,4,3)

Nx (N y ) L1(ρ) O(ρ) L1(ρu) O(ρu) L1(ρE) O(ρE)

16 7.677E-05 - 2.134E-03 - 9.448E-05 -
32 1.164E-05 2.72 2.884E-04 2.89 1.296E-05 2.87
64 1.508E-06 2.95 3.898E-05 2.89 1.806E-06 2.84
128 1.741E-07 3.11 6.320E-06 2.62 8.737E-08 4.37

SI-P O3 with SSP(4,3,3)

Nx (N y ) L1(ρ) O(ρ) L1(ρu) O(ρu) L1(ρE) O(ρE)

16 7.428E-05 - 2.137E-03 - 9.495E-05 -
32 1.128E-05 2.72 2.880E-04 2.89 1.292E-05 2.88
64 1.498E-06 2.91 3.900E-05 2.88 1.806E-06 2.84
128 2.346E-07 2.67 5.887E-06 2.73 2.856E-07 2.66

Table 2
Numerical convergence results for the compressible Euler equations using second and 
third order SI-P schemes at different low Mach regimes with stiffness parameters ranging 
in the interval [ε = 10−1; ε = 10−6]. The errors are measured in L1 norm and refer to the 
variables ρu (horizontal momentum) at time t = 1.

SI-P O2

ε = 10−1 ε = 10−2 ε = 10−3

Nx (N y) L1 Order L1 Order L1 Order

16 1.791E-02 - 1.731E-02 - 1.744E-02 -
32 3.558E-03 2.33 3.875E-03 2.16 3.442E-03 2.34
64 7.835E-04 2.18 9.854E-04 1.98 7.485E-04 2.20
128 1.856E-04 2.08 2.116E-04 2.22 1.811E-04 2.05

ε = 10−4 ε = 10−5 ε = 10−6

Nx (N y) L1 Order L1 Order L1 Order

16 1.743E-02 - 1.738E-02 - 1.738E-02 -
32 3.473E-03 2.33 3.474E-03 2.32 3.473E-03 2.32
64 7.303E-04 2.25 7.327E-04 2.25 7.333E-04 2.24
128 1.663E-04 2.13 1.668E-04 2.14 1.669E-04 2.14

SI-P O3 with SA-DIRK(3,4,3)

ε = 10−1 ε = 10−2 ε = 10−3

Nx (N y) L1 Order L1 Order L1 Order

16 2.222E-03 - 2.227E-03 - 2.188E-03 -
32 3.381E-04 2.72 3.319E-04 2.75 3.292E-04 2.73
64 4.608E-05 2.88 4.440E-05 2.90 4.350E-05 2.92
128 6.320E-06 2.87 5.746E-06 2.95 5.511E-06 2.98

ε = 10−4 ε = 10−5 ε = 10−6

Nx (N y) L1 Order L1 Order L1 Order

16 2.188E-03 - 2.188E-03 - 2.325E-03 -
32 3.280E-04 2.74 3.328E-04 2.74 3.279E-04 2.83
64 4.342E-05 2.92 4.342E-05 2.92 4.341E-05 2.92
128 5.448E-06 2.99 5.448E-06 2.99 5.448E-06 2.99

ρu in Table 2. Second and third order of accuracy are well preserved even in the limit ε = 10−6 in which pressure is 
almost constant and the total energy is entirely constituted by its kinetic part. Fig. 1 depicts the pressure contours and the 
velocity stream-traces for the smooth isentropic vortex in the low Mach regime, highlighting that the numerical solution 
is independent of the Mach number, as expected. The stiffly accurate IMEX scheme (79) has been used at third order for 
retrieving the correct asymptotic behavior in the stiff limit.
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Table 3
Initialization of shock tube problems. Initial states left (L) and right (R) are reported as well as the final time of the simulation t f , 
the computational domain [xL; xR ] and the position of the initial discontinuity xd . The equation of state (EOS) is also specified.

Name t f xL xR xd ρL uL pL ρR uR pR EOS

RP0 (Contact) 0.50 0.0 1.0 0.25 1000 0 105 0.01 0.0 105 ideal gas
RP1 (Lax) 0.14 0.0 1.0 0.50 0.445 1.698 3.528 0.5 0.0 0.571 ideal gas
RP2 (Two shocks) 0.80 0.0 1.0 0.50 1.0 2.0 0.1 1.0 -2.0 0.1 ideal gas
RP3 (Two rarefactions) 0.15 0.0 1.0 0.50 1.0 -1.0 0.4 1.0 1.0 0.4 ideal gas
RK1 0.10 -0.5 0.5 0.0 1.0 1.0 2.0 1.0 -1.0 1.0 Redlich-Kwong
RK2 0.20 -0.5 0.5 0.0 1.0 0.0 1.0 0.125 0.0 0.1 Redlich-Kwong

Fig. 4. Colliding shock test (RP2) at final time t f = 0.8. Comparison of density, velocity and pressure (symbols) versus the reference solution (straight line) 
for third order SI-P schemes.

Fig. 5. Double rarefaction test (RP3) at final time t f = 0.15. Comparison of density, velocity and pressure (symbols) versus the reference solution (straight 
line) for third order SI-P schemes.

4.2. Shock tube problems

The novel numerical method is here validated against a set of well-known Riemann problems for the compressible Euler 
equations taken from [73]. The initial condition of the gas consists in a left (L) and a right (R) state that are separated 
by a discontinuity located at x = xd . The computational domain is the box � = [xL; xR] × [0; 0.1] × [0; 0.1] with Dirichlet 
boundary conditions imposed along the x direction and periodic boundaries set elsewhere. Table 3 summarizes the extension 
of the computational domain as well as the initial condition for density, horizontal velocity and pressure for all shock tube 
problems considered in the following. Riemann problems RK1 and RK2 are concerned with the nonlinear Redlich-Kwong 
EOS and the computational domain is discretized with Nx × N y × Nz = 400 × 4 × 4 control volumes, while the other tests 
involve an ideal gas and the computational grid is composed of Nx × N y × Nz = 200 × 4 × 4 cells. The computation stops 
at the final time indicated in Table 3 and we set CFL = 0.9 for the first four test cases, whereas CFL = 0.5 is adopted 
for the simulations involving the Redlich-Kwong EOS. The reference solution for all test problems is computed with an 
explicit second order MUSCL-TVD scheme run on a very fine mesh composed of 10,000 cells. The numerical solution is plot 
considering a 1D cut through the x direction of the computational domain with 200 equidistant sample points.

Test RP0 provides numerical evidences about the property of the SI-P scheme of maintaining an exact preservation of 
constant pressure and velocity across a contact discontinuity, see Section 3.3. Indeed, a contact discontinuity involving a 
density step of five orders of magnitude is moving at constant velocity and pressure to the right of the domain at Mach 
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Fig. 6. Shock tube problem RK1 at final time t f = 0.1 for the Redlich-Kwong EOS. Comparison of density, velocity, pressure and temperature (symbols) 
versus the reference solution (straight line) for third order SI-P schemes.

number ranging in the interval [2.7 · 10−4; 8.5 · 10−2]. Fig. 2 shows a comparison between first and third order numerical 
solution and it highlights that pressure and horizontal velocity are kept constant up to machine precision.

The second Riemann problem represents a benchmark test for Godunov-type finite volume methods, namely the Lax 
shock tube problem. The results are gathered in Fig. 3 where a very good agreement with the reference solution can be 
appreciated. Moreover, the high order solution is much less dissipative compared to the first order results, hence enhancing 
the benefits of high order discretizations in terms of accuracy especially across rarefaction waves.

RP2 and RP3 are concerned with two strong colliding shocks and a symmetric double rarefaction, respectively. Figs. 4
and 5 plot the numerical solution at the final time of the simulation for RP2 and RP3, respectively. For both tests some 
nonphysical oscillations can be noticed in the density profile which are also present in [38], while the numerical solution 
for velocity and pressure is overall in good agreement with the reference solution. Very small perturbations occur at the 
shock waves, but this is well known also for explicit Godunov-type finite volume schemes as pointed out in [73].

A nonlinear equation of state is considered in Riemann problems RK1 and RK2, which results are shown in Figs. 6 and 
7, respectively. In particular, RK2 is the Sod shock tube problem that has been run using the Redlich-Kwong EOS, thus 
obtaining very different waves in terms of profile and location compared to the same test run with classical ideal gas EOS 
(see [73]). The temperature distribution is also shown and the results reasonably match the reference solution. The Newton 
algorithm (35) for the solution of the pressure wave equation (53)-(54) has always converged to a tolerance δ = 10−10 in at 
most four iterations.

Finally, Fig. 8 shows the regions of the computational domain where the flattener χn has been activated and the solution 
has been updated with the convex combination (104). The troubled cells are indeed identified only where shocks are located 
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Fig. 7. Shock tube problem RK2 at final time t f = 0.2 for the Redlich-Kwong EOS. Comparison of density, velocity, pressure and temperature (symbols) 
versus the reference solution (straight line) for third order SI-P schemes.

and do not involve a large number of control volumes, thus the majority of the computational cells evolve the solution using 
the fully high order space and time scheme.

4.3. 3D explosion problem

In order to validate the proposed high order semi-implicit schemes against shock waves in multiple space dimensions, 
we consider a genuinely multi-dimensional test problem, namely the three-dimensional explosion problem [73]. The initial 
condition in terms of primitive variables is given by

(ρ, u, v, w, p) =
{

(1,0,0,0,1) r < Rs

(0.125,0,0,0,0.1) r ≥ Rs
, (109)

where r =√x2 + y2 + z2 denotes the generic radial coordinate and Rs = 0.5 is the radius of the sphere which separates the 
inner from the outer state. The computational domain is the box � = [−1; 1]3 and Dirichlet boundary conditions are applied 
everywhere. We use Nx = N y = Nz = 160 elements so that the total number of elements is NE = 4′096′000. The ratio of 
specific heats is γ = 1.4 and the final time is chosen to be t f = 0.25. The third order numerical results are plot in Fig. 9
where a comparison with the exact solution is given. In [73,74] all the details for the computation of the reference solution 
can be found, in which the multidimensional equations for hydrodynamics are simplified to a one-dimensional system with 
geometric source terms, that is properly solved with a classical second order TVD scheme on a very fine one-dimensional 
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Fig. 8. Flattener indicator for RP1 (top left), RP2 (top right), RK1 (bottom left) and RK2 (bottom right) test at the final time of the simulation.

mesh. In the first panel of Fig. 9 four isosurfaces for density are depicted in the semi-space {x < 0}, demonstrating the radial 
symmetry of the obtained solution. This property is not trivial since the mesh is not radially aligned. We also plot a one-
dimensional cut of 200 equidistant points along the x-direction for the primitive variables, that retrieve the correct location 
of the discontinuities and exhibit an overall good agreement with the reference solution also for this three-dimensional 
problem.

4.4. Gresho vortex

The so-called Gresho vortex problem [2] is a known stationary solution of the Euler equation that is typically used 
for assessing the behavior of numerical methods at different Mach number. The computational domain is defined by � =
[−0.5; 0.5]3 with Dirichlet boundaries, where the initial condition is imposed. This is given in polar coordinates for density, 
angular velocity and pressure with r =√x2 + y2 denoting the generic radial position on the x − y plane and θ = arctan(y/x)
is the corresponding angle:

ρ(r) = 1

uθ (r) =
⎧⎨
⎩

5r 0 ≤ r < 0.2
2 − 5r 0.2 ≤ r < 0.4
0 r ≥ 0.4
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Fig. 9. 3D explosion problem at time t f = 0.25. Numerical results for density, horizontal velocity and pressure compared against the reference solution 
(black solid line) extracted with a one-dimensional cut of 200 equidistant points along the x-direction at y = z = 0. Isosurfaces for density at levels 
{0.2, 0.5, 0.7, 0.9} are shown in the top left panel.

p(r) =
⎧⎨
⎩

p0 + 25
2 r2 0 ≤ r < 0.2

p0 + 25
2 r2 + 4[1 − 5r − ln(0.2) + ln(r)] 0.2 ≤ r < 0.4

p0 − 2 + 4 ln(2) r ≥ 0.4
, (110)

where the background pressure p0 = ρ/(γ M2) is expressed in terms of the Mach number. The velocity field with Cartesian 
components can be easily obtained from uθ with a rotation, that is (u, v) = uθ /r · (−y, x). This test is run until the final time 
t f = 0.4 π with different magnitudes of the Mach number, namely M = 10−1, M = 10−2 and M = 10−3. The computational 
mesh is composed of Nx × N y × Nz = 80 × 80 × 4 control volumes and the time step is evaluated with CFL = 0.15 according 
to [50]. Fig. 10 depicts the velocity magnitude contours together with the stream-traces of the velocity field for each Mach 
number regime. The pressure profile along the x direction is also shown and compared against the exact solution. An excel-
lent agreement can be appreciated, hence concluding that the novel semi-implicit pressure scheme preserves the stationary 
solution for a wide range of Mach numbers.

Fig. 11 depicts the evolution of the total kinetic energy normalized with respect to the initial kinetic energy. Two different 
grids are used with characteristic mesh size of h1 = 1/40 and h2 = 1/80 for different values of the Mach number. The time 
step here is evaluated with CFL = 0.25. We consider both second order and third order schemes, in order to give evidences 
of the less dissipative behavior of the higher order scheme compared to the widespread second order solvers available in 
the literature for low Mach flows [50,48,51]. The results do not depend on the stiffness regime because of the asymptotic 
property of the schemes, that allows all these simulations to be run with the same time step. Indeed, one can notice that 
W. Boscheri and L. Pareschi Journal of Computational Physics 434 (2021) 110206
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Fig. 10. Gresho vortex problem with third order SI-P scheme at the final time t f = 0.4 π with Mach number M = 10−1 (top), M = 10−2 (middle), M = 10−3

(bottom). Left: stream-traces of the velocity field with velocity magnitude contours (30 levels have been used in the range [3 · 10−6; 1] for all Mach 
numbers). Right: pressure distribution versus reference solution along a 1D cut in x−direction (y = z = 0) with 80 interpolation points.
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Fig. 11. Evolution of the total kinetic energy K normalized with respect to the initial kinetic energy K0 of the Gresho vortex problem computed with second 
order (left) and third order (right) semi-implicit scheme. Dashed lines refer to the mesh size Nx = N y = 40, while dash-dot lines refer to the mesh size 
Nx = N y = 80. Mach number 0.1 (red), 0.01 (blue), 0.001 (black) are considered.

the lines are almost overlapping, thus demonstrating that the low Mach regime does not affect neither the stability nor 
the accuracy of the numerical scheme. Compared to other results in the literature [50], the high order accuracy of the 
SI-P method reduces the numerical dissipation, which is particularly evident on the coarser mesh h1. The kinetic energy 
dissipation measures 0.997 and 0.998 for second and third order scheme, respectively, in the case of the finest mesh. The 
advantage induced by a higher order discretization is more evident on the coarse mesh, where the ratio K/K0 is 0.984 for 
M = 2 and 0.988 for M = 3.

4.5. Viscous shock

Now we consider the full Navier-Stokes system (1) in the case of supersonic viscous flows. Specifically, we propose 
to solve the problem of an isolated viscous shock wave which is traveling into a medium at rest with a shock Mach 
number of Ms = 2. The analytical solution of this problem has been obtained in [75] where the compressible Navier-Stokes 
equations are solved for the special case of a stationary shock wave at Prandtl number Pr = 0.75 with constant viscosity. 
According to [75,54], the exact solution is given in terms of dimensionless variables, namely density, pressure and velocity. 
The dimensionless velocity ū = u

Ms c0
is related to the stationary shock wave. This can then be computed as the root of the 

following equation:

|ū − 1|
|ū − λ2|λ2 =

∣∣∣∣1 − λ2

2

∣∣∣∣
(1−λ2)

exp

(
3

4
Res

M2
s − 1

γ M2
s

x

)
, (111)

with

λ2 = 1 + γ −1
2 M2

s
γ +1

2 M2
s

. (112)

The solution of equation (111) permits to express the dimensionless velocity ū as a function of x. The form of the viscous 
profile of the dimensionless pressure p̄ = p−p0

ρ0c2
0 M2

s
is given by the relation

p̄ = 1 − ū + 1

2γ

γ + 1

γ − 1

(ū − 1)

ū
(ū − λ2). (113)

Finally, the profile of the dimensionless density ρ̄ = ρ
ρ0

is derived from the integrated continuity equation: ρ̄ū = 1. In 
order to simulate an unsteady shock wave traveling into a medium at rest, one can simply superimpose a constant velocity 
field u = Msc0 to the solution of the stationary shock wave found in the previous steps. The computational domain is the 
rectangular box � = [0; 1] × [0; 0.2] × [0; 0.2] which is discretized with a total number of cells Nx × N y × Nz = 200 × 4 × 4. 
Periodic boundaries are imposed in y and z direction, while the constant inflow velocity is prescribed for x = 0 and outflow 
boundary condition is set at x = 1. The time step is evaluated with CFL = 0.5 and the final time of the simulation is 
t f = 0.2. The initial condition is given by a shock wave centered at x = 0.25 which is propagating at Mach Ms = 2 from left 
to right with a Reynolds number of Re = 100. The upstream shock state is defined by ρ0 = 1, u0 = v0 = 0, p0 = 1/γ and 
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Fig. 12. Viscous shock problem with shock Mach number Ms = 2 and Prandtl number Pr = 0.75. Third order SI-P solution compared against analytical 
solution for density (top left), horizontal velocity (top right), pressure (bottom left) and heat flux in x-direction (bottom right). One-dimensional cut of 200 
equidistant points along the x-direction at y = z = 0.

c0 = 1, while the fluid viscosity is μ = 2 × 10−2 and the ideal gas law is adopted, thus allowing the heat flux in (1) to be 
treated implicitly in the pressure wave equation (53). The third order SI-P schemes is used to run the simulation and the 
results are depicted in Fig. 12, which match very closely the analytical solution for density, horizontal velocity, pressure and 
heat flux in x direction computed as qx = λ ∂T

∂x . Though being a one-dimensional problem, let observe that this test case 
involves all terms contained in the governing equations, hence including convective and viscous fluxes, pressure gradients 
as well as temperature gradients and heat fluxes. Furthermore, an analytical solution does exist which permits to compare 
the numerical results. Looking at the excellent matching between numerical and exact solution we can conclude that the 
Navier-Stokes system is properly discretized by the novel semi-implicit pressure solver proposed in this article.

4.6. 3D Taylor-Green vortex

As last test case we solve the well-known 3D Taylor-Green vortex, that is a widespread test problem used in the context 
of incompressible flows. The initial condition of the fluid according to [5] writes

ρ(x,0) = ρ0,

u(x,0) = ( sin(x) cos(y) cos(z), − cos(x) sin(y) cos(z), 0) ,

p(x,0) = p0 + ρ0
(cos(2x) + cos(2y)) (cos(2z) + 2)) , (114)
16
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Fig. 13. 3D Taylor-Green vortex at Re = 200 and p0 = 103. Velocity magnitude (left) and vorticity iso-surfaces at levels {2, 3, 5} (right) at time t = 4 (top) 
and t = 8 (bottom).

with ρ0 = 1. The computational domain is the cube � = [−π, π ]3 and periodic boundary conditions are imposed every-
where. Starting from this smooth initial condition, the flow quickly degenerates into very complex small scale structures, 
depending on the Reynolds number. Consequently, no analytical solution is available for this highly unsteady flow. Never-
theless, in [3] well-resolved DNS studies for an incompressible fluid are available, hence we consider those results as a very 
accurate reference solution. Two different simulations are run for this test problem. The first setting (i) considers a back-
ground pressure p0 = 103 and the third order version of our semi-implicit compressible solver with the time step evaluated 
with CFL = 0.5. In the second configuration (ii), in order to mimic the incompressible property of the fluid, we impose 
p0 = 105 and we use a second order accurate scheme with CFL = 0.25. The final time of the simulation is set to t f = 10
and two different values of Reynolds number are taken into account, namely Re = 100 and Re = 200. The computational 
domain is discretized with a total number of 1′728′000 and 4′096′000 control volumes for the first and the second setting, 
respectively. The meshes are obtained by choosing Nx × N y × Nz = 1203 (i) and Nx × N y × Nz = 1603 (ii), accordingly. Fig. 13
depicts the vorticity isosurfaces together with the velocity magnitude for Re = 200 in the first setting, clearly showing the 
development of the small-scale structures that arise from the fluid flow.

Finally, Fig. 14 plots the time series of the calculated total kinetic energy dissipation rates −dK/dt compared against the 
DNS data [3]. Also for this rather complex test case, the numerical results obtained with the third order SI-P schemes fit 
well with the reference solution for all the considered Reynolds numbers. Notice that the spatial resolution used for running 
this test is relatively coarse compared to existing second order solvers. However, the results are of good quality because of 
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Fig. 14. Time evolution of the kinetic energy dissipation rate −dK/dt for the 3D Taylor-Green vortex compared with available DNS data of Brachet et al. 
[3]. Second order results (O(2), solid lines) are obtained with a characteristic mesh size h = 2π/160 and background pressure p0 = 105, while third order 
results (O(3), dashed lines) are obtained using h = 2π/120 and p0 = 103.

the high order discretization achieved by the novel semi-implicit schemes. This has also been observed in the case of higher 
order DG schemes [39,40] where the spatial resolution could be reduced even further. In the truly incompressible limit 
of the model with p0 = 105, the second order SI-P scheme also performs well, obtaining an excellent agreement with the 
reference data. A finer computational mesh is adopted compared to what used for the third order simulation but still coarser 
than the one employed by the method presented in [48], which requires much more computational cells to carry out the 
same simulations of the 3D Taylor-Green vortex test case.

5. Conclusions

A novel high-order semi-implicit numerical method for the solution of the compressible Navier-Stokes equations at all 
Mach numbers has been derived and discussed. A high order cell-centered quadrature-free finite volume scheme is used 
for the approximation of the explicit fluxes, whereas finite differences are employed for the discretization of the implicit 
terms. Collocated Cartesian grids are used in a fully three-dimensional setting and the fluid can be modeled with ideal gas 
as well as with general equations of state that might lead to a nonlinear relation between internal energy and pressure. The 
new semi-implicit method splits the kinetic energy and the enthalpy fluxes into an explicit and an implicit part, making 
the usage of an iterative solver for the pressure unnecessary. Formal analysis of the scheme at the discrete level reveals 
the asymptotic property of the algorithm, which is capable of retrieving at the discrete level a consistent discretization of 
the limit model in the zero Mach number regime. High order time stepping is performed relying on IMEX schemes and 
the resulting stability condition requires a time step limitation based only on the fluid velocity (and eventually the viscous 
eigenvalues) and not on the acoustic speed, thus making the novel numerical method very efficient and suitable for the 
simulation of low Mach flows. The implicit sub-system requires the solution of an elliptic equation for the pressure, which 
allows to easily include nonlinear EOS by adopting a nested Newton solver for the resulting mildly nonlinear system. This 
would not hold true in the case of the derivation of an implicit equation for the total energy, where the system would 
become fully nonlinear. A wide set of benchmark problems is proposed to test the accuracy and the robustness of the new 
algorithm, involving low and high Mach number flows as well as viscous and inviscid fluid simulations.

Future research will concern the solution of more complex systems of hyperbolic equations with nonconservative prod-
ucts and stiff source terms like the GPR model [76], which would simultaneously allow a unified formulation for continuum 
mechanics, including fluids and solids. Another potential future topic of research may be the application of the new semi-
implicit pressure-based IMEX solver to the equations of magnetohydrodynamics with involution constraints, which require 
the additional property of keeping a zero divergence of the magnetic field at the discrete level.
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